# Parallel Pumping in Condenser Applications: Part 1 of 5

/By Chad Edmondson (JMP) and Norman Hall (RLD)

Applying a single constant speed pump for each condenser in a chilled water application is a normal design for the HVAC engineer. Some chiller manufacturers suggest piping the pumps with a common header and activating each pump as the condensers are staged on. However, there is a hidden issue with this approach, which, if not addressed may cause major problems.

This is the first of a four-part series on common problems (and solutions) when it comes to parallel pumping in condenser water applications.

Here is a typical cooling tower system sketch:

As each chiller is enabled, the tower pump is started; once flow is proven across the condenser, the chiller is started. When CH-1 is enabled, pump P-1 is started. When chiller CH-2 is enabled, pump P-2 is started. The flow rate of each pump is matched to the condenser flow rate. ASHRAE 90.1-2013 energy standards advocate stopping flow in any heat transfer source that is not active, so the sketch has two way valves at each condenser.

Let’s look at an example and see how the pump operates as pumps are staged on. For simplicity, the example will assume one chiller and pump are standby and only two are operating at design flow. Assume 800 GPM per condenser for a total of 1600 GPM. Let’s also assume that in this example the tower elevation or lift is 10 feet, the condenser including the two-way valve and balance valve has 20 feet of pressure drop, and the common piping with any safety factor has 30 feet of pressure drop. Thus we arrive at the following pressure drop for each pump:

**10’ + 20’ + 30’ = 50’ at 800 GPM for each pump**

For the purpose of our example, we used the Bell & Gossett ESP-PLUS selection program and looked at both *e*1510 base mounted end suction and *e*80SC vertical inline pump selections for this. Clearly, the *e*1510-5BD has a better efficiency and the NPSH met our needs so we chose that model.

The pumps are piped in parallel but the operation required is at either 800 GPM or 1600 GPM, depending on the number of chillers needed to meet demand. Regardless of whether one pump or two pumps are operating, the tower lift remains at 10 feet so that is a fixed head. Since the system requires a constant flow of 800 GPM at each condenser, the pressure drop across the condenser should also be fixed at 20 feet. The variable head in the system is 30 feet in the common piping.

The second affinity law states that head varies as the square of the flow rate, so if the variable head is 30 feet at 1600 GPM, the common head required at 800 GPM is 7.5 feet.

Therefore, in this example, at 800 GPM the head should be 10’ + 20’ + 7.5’ = 37.5’.

Let’s look at the parallel pump curve. If there were no two-way valves on the condenser, the control head in an open system would simply be the lift or 10 feet. Since the two-way valve will be closed on one condenser, we could represent the control head as 10’ plus the 20’ across the condenser for a total of 30’.

In parallel pumping, the single pump operation is at the intersection of the single pump curve and the system curve. In this example, we want the operation to be 800 GPM at 37.5’. This is where the hidden problem appears. The intersection of the two curves is not at 800 GPM at 37.5’, it is at about 1100 GPM at 39’. When one pump shuts down and the two-way valve closes, the flow rate will be 37%* above* the design of the condenser. If this exceeds the condenser maximum flow rate, the manufacturer may void the warranty on a very expensive piece of equipment.

What can we do about this? Stay tuned for Part 2 of this series!